Abstract

We present a four-channel wavelength division demultiplexing detector using the principle of quantum confined Stark effect. This device is based on a ridge waveguide GaAs–AlGaAs single quantum well graded index separate confinement heterostructure. Four detectors are fabricated sequentially along the wave guide and their band gaps are tuned to progressively smaller values by applying progressively larger reverse bias voltages. Thus each detector responds preferably to one of the four input wavelengths. For transverse electric polarization, better than −10 dB crosstalk was achieved with a 14 nm wavelength separation. When operated as a three-channel device, better than −15 dB crosstalk was achieved with a 18 nm wavelength separation. For transverse magnetic polarization, better than −10 dB crosstalk was achieved with a 16 nm wavelength separation. We also present a theoretical study that leads to the optimization of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.