Abstract

We present the design, synthesis, and characterization of a novel cancer biomarker delivery platform, the star-shaped four-arm poly(ethylene glycol) (StarPEG). Using the multidisplay platform we were able to synthesize a bombesin (BBN) positron emission tomography (PET) probe featuring four copies of 8-Aoc-BBN peptides (where 8-Aoc is 8-aminooctanic acid), which we named StarPEG-BBN. Cell binding studies showed that StarPEG-BBN had a good binding affinity to PC3 cells (IC50 = 65.3 ± 3.4 nM). Cell uptake studies showed that the binding was specific (blocking vs no-blocking, P < 0.05). Mice were then implanted with PC3 cells and divided into two groups, one injected with 64Cu-StarPEG-BBN and the other 250 μg of unlabeled 8-Aoc-BBN along with 64Cu-StarPEG-BBN. In vivo images revealed that StarPEG-BBN had good tumor uptake (4.2 ± 0.4% ID/g at 4 h post-injection (p.i.)) and was significantly blocked by coinjection of unlabeled 8-Aoc-BBN at 4 h p.i. (P = 0.003). The small animal PET quantification was further verified by the biodistribution study at 24 h p.i. Our study demonstrated that the novel four-arm PEG platform StarPEG as a cancer biomarker multimerization/delivery platform conserves binding specificity, improves drug loading, is capable of achieving good tumor uptake, and has great potential in cancer treatment and molecular imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.