Abstract

We present the γ-calculus, a computational calculus for higher-order concurrent programming. The calculus can elegantly express higher-order functions (both eager and lazy) and concurrent objects with encapsulated state and multiple inheritance. The primitives of the γ-calculus are logic variables, names, procedural abstraction, and cells. Cells provide a notion of state that is fully compatible with concurrency and constraints. Although it does not have a dedicated communication primitive, the γ-calculus can elegantly express one-to-many and many-to-one communication. There is an interesting relationship between the γ-calculus and the π-calculus: The γ-calculus is subsumed by a calculus obtained by extending the asynchronous and polyadic π-calculus with logic variables. The γ-calculus can be extended with primitives providing for constraint-based problem solving in the style of logic programming. A such extended γ-calculus has the remarkable property that it combines first-order constraints with higher-order programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.