Abstract

Invasion of human erythrocytes is essential for Plasmodium falciparum parasite survival and pathogenesis, and is also a complex phenotype. While some later steps in invasion appear to be invariant and essential, the earlier steps of recognition are controlled by a series of redundant, and only partially understood, receptor-ligand interactions. Reverse genetic analysis of laboratory adapted strains has identified multiple genes that when deleted can alter invasion, but how the relative contributions of each gene translate to the phenotypes of clinical isolates is far from clear. We used a forward genetic approach to identify genes responsible for variable erythrocyte invasion by phenotyping the parents and progeny of previously generated experimental genetic crosses. Linkage analysis using whole genome sequencing data revealed a single major locus was responsible for the majority of phenotypic variation in two invasion pathways. This locus contained the PfRh2a and PfRh2b genes, members of one of the major invasion ligand gene families, but not widely thought to play such a prominent role in specifying invasion phenotypes. Variation in invasion pathways was linked to significant differences in PfRh2a and PfRh2b expression between parasite lines, and their role in specifying alternative invasion was confirmed by CRISPR-Cas9-mediated genome editing. Expansion of the analysis to a large set of clinical P. falciparum isolates revealed common deletions, suggesting that variation at this locus is a major cause of invasion phenotypic variation in the endemic setting. This work has implications for blood-stage vaccine development and will help inform the design and location of future large-scale studies of invasion in clinical isolates.

Highlights

  • Plasmodium falciparum is an obligate intracellular parasite, unable to replicate outside a host cell

  • All the symptoms of malaria are caused after Plasmodium parasites invade human red blood cells

  • This analysis revealed that expression differences in two neighboring genes of the Reticulocyte Binding Homologue family are responsible for most of the variation in two invasion pathways

Read more

Summary

Introduction

Plasmodium falciparum is an obligate intracellular parasite, unable to replicate outside a host cell. The parasite has evolved a series of strategies to evade the host immune response during erythrocyte invasion These strategies include using multiple alternative pathways to recognize erythrocytes, which are thought to allow the parasite population to survive if a specific invasion route is blocked by the immune response, or to adapt to different human erythrocyte surface polymorphisms. These alternate invasion pathways, and the receptor-ligand interactions that specify them, have been the subject of intensive research. This, coupled with detailed video microscopy studies, has led to a model where the receptor-ligand

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.