Abstract

This paper discusses the need for short circuit analysis in real-time applications of modern distribution networks and presents a short circuit tool that builds on recent advances in Fortescue-based current injection power flow. The proposed short circuit computation (SCC) method is fundamentally based on the symmetrical components transformation of three-phase, two-phase, and one-phase systems. Unlike the classical symmetrical components SCC method that postulates a structurally symmetrical three-phase pre-fault network with balanced loading, the proposed method accounts for multiphase networks that are comprised of three-phase, two-phase, and one-phase network parts; given a pre-fault power flow solution, it requires a maximum of three current injection iterations to compute the short circuit current flow in the entire network. Numerical results show that the Fortescue SCC approach with multiphase lines exhibits significant computational performance improvement on large-scale networks as compared to classical SCC in phase coordinates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call