Abstract

We introduce a new formulation of the many-body expansion (MBE) for periodic systems and apply it to 7 ice polymorphs (Ih, II, VIII, IX, XIII, XIV, and XV). This new formulation is built via a hierarchical procedure that connects gas-phase clusters that mimic unit cells over finite supercells to infinite solids. For periodic systems, the method is validated by showing that the lattice energies computed up to the 4-body in the MBE reproduce the lattice energies obtained using periodic boundary conditions with an Ewald summation for the 7 ice polymorphs. This development makes it possible to quantify, for the first time, the many-body contributions to the lattice energy of various ice polymorphs, which vary significantly among the 7 ice phases, amounting to between 7 and 24% of the total lattice energies. This development opens the door for obtaining insights into solid-state properties, while leveraging the computational benefits of the MBE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call