Abstract

The first objective of this paper is to highlight the capabilities and limitations of concrete uniaxial constitutive models at elevated temperatures for thermo-mechanical behavior modeling, depending on the implicit or explicit consideration of transient creep strain in the model. The characteristics inherent to the two types of models are described and compared. It appears that one of the major limitations of implicit models concerns the unloading stiffness. Based on numerical analysis performed on loaded concrete columns subjected to natural fire, it is shown that the stress–temperature paths experienced by structural concrete are varied and complicated and that concrete material models cannot handle properly these complex situations of unsteady temperatures and stresses without explicit consideration of transient creep.The second objective of the paper is to propose a new formulation of the Eurocode 2 concrete material model that contains an explicit term for transient creep. The new model is implemented in the software SAFIR and validated against experimental data of the mechanical strain developed by concrete cylinders under different unsteady temperatures and loads. It is shown that the actual material behavior is better matched with the new explicit model than with the current implicit Eurocode 2 model. Finally, a comparison is given between experimental and computed results on a centrally loaded concrete column submitted to heating–cooling sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.