Abstract
The associated Buchsbaum–Rim multiplicities of a module are a descending sequence of non-negative integers. These invariants of a module are a generalization of the classical Hilbert–Samuel multiplicity of an ideal. In this article, we compute the associated Buchsbaum–Rim multiplicity of a direct sum of cyclic modules and give a formula for the second to last positive associated Buchsbaum–Rim multiplicity in terms of the ordinary Buchsbaum–Rim and Hilbert–Samuel multiplicities. This is a natural generalization of a formula given by Kirby and Rees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.