Abstract

A gear form-grinding optimization method is proposed to obtain an optimal profile of a form-grinding wheel by solving a transcendental equation of the contact line between a form-grinding wheel and a helical gear workpiece. Since the equation of the contact line is transcendental, the relationship between the installation angle of the form-grinding wheel and the shape of the contact line cannot be represented by explicit functions, which makes it difficult to obtain the optimal profile of the form-grinding wheel. An optimization method of the contact line between the form-grinding wheel and the gear is proposed using three evaluation parameters that are the overrun, the shift, and the offset. Some gear form-grinding performances, such as machining stroke, tooth deviation, and grinding chatter, can be quantitatively described using those evaluation parameters. Further, a method for optimizing evaluation parameters is proposed, which uses a particle swarm optimization-support vector machine (PSO-SVM) model with the advantage of small-sample robustness to solve evaluation parameters. The PSO-SVM model is trained under the condition of different installation angles of the form-grinding wheel as the input and the evaluation function as the output. The R-squared value of the overrun is 0.986 that vilidate the high accuracy of the PSO-SVM model. Gear form-grinding test results show the proposed method can effectively improve grinding accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.