Abstract

It is known that acceptor-carbon complexes have ionization energies less than those of the corresponding substitutional, separate acceptors in silicon. We present the formation mechanism for a shallower acceptor energy level called an X level that is due to an indium- carbon pair. Ab initio calculation methods were used to evaluate electronic structures and lattice relaxations of silicon with indium, carbon or a carbon-indium dimer. The results shows that the bonding interaction between the 5p orbitals of the indium atom and the 3sp orbitals of the silicon atoms bound with the indium atom mainly determines the ionization energy of the X level, and the ionic bonding interaction of the carbon atomic orbitals with the indium atomic orbitals in the X level enables the bonding interaction of the orbitals between the indium atom and the silicon atom to lower the corresponding indium acceptor level, and then to form the shallower X level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.