Abstract
This work presents formal correctness proofs in Isabelle/HOL of algorithms to transform a matrix into Smith normal form, a canonical matrix form, in a general setting: the algorithms are written in an abstract form and parameterized by very few simple operations. We formally show their soundness provided the operations exist and satisfy some conditions, which always hold on Euclidean domains. We also provide a formal proof on some results about the generality of such algorithms as well as the uniqueness of the Smith normal form. Since Isabelle/HOL does not feature dependent types, the development is carried out by switching conveniently between two different existing libraries by means of the lifting and transfer package and the use of local type definitions, a sound extension to HOL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.