Abstract
AbstractSambin [6] proved the normalization theorem (Hauptsatz) for GL, the modal logic of provability, in a sequent calculus version called by him GLS. His proof does not take into account the concept of reduction, commonly used in normalization proofs. Bellini [1], on the other hand, gave a normalization proof for GL using reductions. Indeed, Sambin's proof is a decision procedure which builds cut‐free proofs. In this work we formalize this procedure as a recursive function and prove its recursiveness in an arithmetically formalizable way, concluding that the normalization of GL can be formalized in PA. MSC: 03F05, 03B35, 03B45.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.