Abstract
In a previous paper, the author (2001) proved the convergence of a commonly used decomposition method for support vector machines (SVMs). However, there is no theoretical justification about its stopping criterion, which is based on the gap of the violation of the optimality condition. It is essential to have the gap asymptotically approach zero, so we are sure that existing implementations stop in a finite number of iterations after reaching a specified tolerance. Here, we prove this result and illustrate it by two extensions: /spl nu/-SVM and a multiclass SVM by Crammer and Singer (2001). A further result shows that, in final iterations of the decomposition method, only a particular set of variables are still being modified. This supports the use of the shrinking and caching techniques in some existing implementations. Finally, we prove the asymptotic convergence of a decomposition method for this multiclass SVM. Discussions on the difference between this convergence proof and the one in another paper by Lin are also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.