Abstract

Form-finding is an essential task in the design of efficient lightweight structures. It is based on the crucial assumption of one single shape-determining load case, usually represented by self-weight. Adaptive components integrated into the structure open a way to even more efficient lightweight designs, as such structures can adapt their shapes to varying external loads and redistribute internal forces. This article presents a method for form-finding of adaptive truss structures subject to multiple, independently acting load cases, also incorporating possible design constraints. To ensure the consistency of the manufacturing lengths of passive elements in all load cases, special constraints are considered. The method enables to reduce sensitivity of the structural shape with respect to various different loads by means of actuation to meet design and serviceability requirements with a lower structural mass compared to conventional design strategies. This is demonstrated within a replaced real-world-like setting of an adaptive suspension truss bridge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.