Abstract

The relationship between rain flow into the soil and forest structure was investigated in a dense deciduous Betula ermanii forest in northern Japan. The forest floor was covered with dwarf bamboo Sasa kurilensis. Observation was conducted from mid-July to late October in 1998. Leaf fall of Betula started in early September and ended in late October. Stemflow was proportional to rainfall and tree size [diameter at breast height (DBH)], and for the same rainfall, stemflow increased with leaf fall. On the contrary, throughfall decreased with leaf fall. Throughfall was intercepted also by Sasa in proportion to its leaf area. Multiple linear regression analysis revealed that stemflow and throughfall of Betula and Sasa were predictable as functions of rainfall and forest structural characteristics, such as DBH, tree density, and stand leaf mass. The rain interception by plants tended to decrease from summer to autumn, but the difference in the interception was about 2% between July (fully expanded leaves) and late October (lack of leaves). About 96 and 87% of rainfall reached the above- and below-Sasa layers, respectively. Thus, this study showed that understory Sasa is a major component of rain interception within the stand and that rain flow into the soil can be estimated by using rainfall and the forest structural parameters, such as DBH, tree density and stand leaf mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.