Abstract
Fire Hazard (FH) modelling is a relevant fire prevention/assessment tool. This work proposes a FH model and generates a FH map for a wildland urban interface area in Germany that is not prone to extreme fires. The main input data include weather, topography, fuel, and anthropic-related potential ignition points. The main steps include (1) identification/description of weather scenarios, and for each scenario (2) analysis of potential fire ignition through simulation of Fire Probability (FP), (3) modelling the potential fire behaviour through simulation of Fireline Intensity (FLI), (4) generation of a FH map by combining FP and FLI maps, and (5) integration of all maps into a final FH map. Extreme ignition and propagation conditions were considered: (1) a fuel model that describes the fire performance in an extreme drought scenario, (2) the human influence through mechanistic ignitions, and (3) the worst case of all scenarios. As results, four weather scenarios were identified and described. FP maps, FLI maps, and FH maps were created for each of them, and finally an integrated FH map (IFHM) was derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.