Abstract

Recently, about five hundred fast radio bursts (FRBs) detected by CHIME/FRB Project have been reported. The vast amounts of data would make FRBs a promising low-redshift cosmological probe in the forthcoming years, and thus the issue of how many FRBs are needed for precise cosmological parameter estimation in different dark energy models should be detailedly investigated. Different from the usually considered w(z)-parameterized models in the literature, in this work we investigate the holographic dark energy (HDE) model and the Ricci dark energy (RDE) model, which originate from the holographic principle of quantum gravity, using the simulated localized FRB data as a cosmological probe for the first time. We show that the Hubble constant H 0 can be constrained to about 2% precision in the HDE model with the Macquart relation of FRB by using 10000 accurately-localized FRBs combined with the current CMB data, which is similar to the precision of the SH0ES value. Using 10000 localized FRBs combined with the CMB data can achieve about 6% constraint on the dark-energy parameter c in the HDE model, which is tighter than the current BAO data combined with CMB. We also study the combination of the FRB data and another low-redshift cosmological probe, i.e. gravitational wave (GW) standard siren data, with the purpose of measuring cosmological parameters independent of CMB. Although the parameter degeneracies inherent in FRB and in GW are rather different, we find that more than 10000 FRBs are demanded to effectively improve the constraints in the holographic dark energy models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call