Abstract

A robotic surgical device, actuated by Ionic Polymer-metal Composite (IPMC), integrated with a strain gauge to achieve force control is proposed. Test results have proved the capabilities of this device to conduct surgical procedures. The recent growth of patient acceptance and demand for robotic aided surgery has stimulated the progress of research where in many applications the performance has been proven to surpass human surgeons. A new area which uses the inherently force compliant and back-drivable properties of polymers, IPMC in this case, has shown its potential to undertake precise surgical procedures in delicate environments of medical practice. This is because IPMCs have similar actuation characteristics to real biological systems ensuring the safety of the practice. Nevertheless, little has been done in developing IPMCs as a rotary joint actuators used as functional surgical devices. This research demonstrates the design of a single degree of freedom (1DOF) robotic surgical instrument with one joint mechanism actuated by IPMC with an embedded strain gauge as a feedback unit, and controlled by a scheduled gain PI controller. With the simplicity of the system it was proven to be able to cut to the desired controlled force and hence depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.