Abstract

A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7,5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.