Abstract

The present study examines a new bioaccumulation model for hydrophobic organic chemicals in aquatic food webs. The purpose of the model is to provide site-specific estimates of chemical concentrations and associated bioconcentration factors, bioaccumulation factors, and biota-sediment accumulation factors in organisms of aquatic food webs using a limited number of chemical, organism, and site-specific data inputs. The model is a modification of a previous model and incorporates new insights regarding the mechanism of bioaccumulation derived from laboratory experiments and field studies as well as improvements in model parameterization. The new elements of the model include: A model for the partitioning of chemicals into organisms; kinetic models for predicting chemical concentrations in algae, phytoplankton, and zooplankton; new allometric relationships for predicting gill ventilation rates in a wide range of aquatic species; and a mechanistic model for predicting gastrointestinal magnification of organic chemicals in a range of species. Model performance is evaluated using empirical data from three different freshwater ecosystems involving 1,019 observations for 35 species and 64 chemicals. The effects of each modification on the model's performance are illustrated. The new model is able to provide better estimates of bioaccumulation factors in comparison to the previous food web bioaccumulation model while the model input requirements remain largely unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.