Abstract

It was recently reported that a de novo designed peptide 33mer, betapep-4, can form well-structured beta-sheet sandwich tetramers (Ilyina E, Roongta V, Mayo KH, 1997b, Biochemistry 36:5245-5250). For insight into the pathway of betapep-4 folding, the present study investigates the concentration dependence of betapep-4 self-association by using 1H-NMR pulsed-field gradient (PFG)-NMR diffusion measurements, and circular dichroism. Downfield chemically shifted alphaH resonances, found to arise only from the well-structured betapep-4 tetramer state, yield the fraction of tetramer within the oligomer equilibrium distribution. PFG-NMR-derived diffusion coefficients, D, provide a means for deriving the contribution of monomer and other oligomer states to this distribution. These data indicate that tetramer is the highest oligomer state formed, and that inclusion of monomer and dimer states in the oligomer distribution is sufficient to explain the concentration dependence of D values for betapep-4. Equilibrium constants calculated from these distributions [2.5 x 10(5) M(-1) for M-D and 1.2 x 10(4) M(-1) for D-T at 313 K] decrease only slightly, if at all, with decreasing temperature indicating a hydrophobically mediated, entropy-driven association/folding process. Conformational analyses using NMR and CD provide a picture where "random coil" monomers associate to form molten globule-like beta-sheet sandwich dimers that further associate and fold as well-structured tetramers. Betapep-4 folding is thermodynamically linked to self-association. As with folding of single-chain polypeptides, the final folding step to well-structured tetramer betapep-4 is rate limiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.