Abstract

Small- and medium-sized manufacturers, as well as large original equipment manufacturers (OEMs), have faced an increasing need for the development of intelligent manufacturing machines with affordable sensing technologies and data-driven intelligence. Existing monitoring systems and prognostics approaches are not capable of collecting the large volumes of real-time data or building large-scale predictive models that are essential to achieving significant advances in cyber-manufacturing. The objective of this paper is to introduce a new computational framework that enables remote real-time sensing, monitoring, and scalable high performance computing for diagnosis and prognosis. This framework utilizes wireless sensor networks, cloud computing, and machine learning. A proof-of-concept prototype is developed to demonstrate how the framework can enable manufacturers to monitor machine health conditions and generate predictive analytics. Experimental results are provided to demonstrate capabilities and utility of the framework such as how vibrations and energy consumption of pumps in a power plant and CNC machines in a factory floor can be monitored using a wireless sensor network. In addition, a machine learning algorithm, implemented on a public cloud, is used to predict tool wear in milling operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call