Abstract
We present a compact sequent calculus LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical, intuitionistic, and multiplicative–additive linear logics are derived as fragments of the host system by varying the sensitivity of specialized structural rules to polarity information. We identify a general set of criteria under which cut-elimination holds in such fragments. From cut-elimination we derive a unified proof of the completeness of focusing. Furthermore, each sublogic can interact with other fragments through cut. We examine certain circumstances, for example, in which a classical lemma can be used in an intuitionistic proof while preserving intuitionistic provability. We also examine the possibility of defining classical–linear hybrid logics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.