Abstract

Poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) is a transparent conductive material and a good candidate for being employed as substitute for indium tin oxide (ITO) in reducing the production costs of organic solar cells. To enhance the performance of organic devices, an improving in the conductivity of PEDOT:PSS is crucial and using the solvent additive rises the electrical conductivity by the optimization of the film morphology. The studies have only focused on the relationship between the electrical conductivity of thin films and the crystallinity of PEDOT, and it is also found that the high conductivity is observed in the highly crystalline samples. This study focused on the effect of tacticity of PS on the conductivity of PEDOT:PSS films. First, atactic and isotactic polystyrenes were sulfonated and the complexes of PEDOT:PSS were synthesized. The N-methylpyrrolidone (NMP), as a secondary dopant, was then added to the complexes and conductivity enhancement was investigated in various annealing times. The obtained films were characterized by atomic force microscopy, X-ray diffraction, four point probe resistivity measurement system, UV–visible spectroscopy, FT-IR, and cyclic voltammetry. The electrical conductivity of PEDOT:iPSS films synthesized by the isotactic polystyrene was ~ 0.68 S/cm and by adding 5 wt% NMP into PEDOT:PSS solution, the conductivity of the annealed thin layers increased more than 10-folds (~ 7.73 S/cm) at an appropriate temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call