Abstract

16-Hydroxy-cleroda-3,13-dien-16,15-olide (HCD) which is extracted from a medicinal plant, Polyalthia longifolia, was shown to exhibit anticancer activity through apoptosis and FAK inhibition in our previous study. To improve its solubility and efficacy, a novel HCD delivery system using copper-substituted mesoporous silica nanoparticles (MSNs) was designed as a delivery vehicle, and the outer surfaces of MSNs were further coated with enteric polymers to prevent the drug from leaching in the stomach acid. All the data regarding synthesis and physical characterization, including Zeta potential, FT-IR spectra, N2 adsorption–desorption isotherms (BET), drug loading, powder X-ray diffraction, Thermo gravimetric analysis (TGA), Transmission electron microscopy (TEM), and Scanning electron microscopy (SEM) were well characterized. The non-coated MSN-HCD exposed to acidic pH (1.2) showed a rapid degradation of the drug, whereas the enteric-coated samples presented a sustained release profile in the gastrointestinal pHs. Cell cytotoxicity was further confirmed by the MTT-C6 Glioma cell line, in vitro. When compared with the control and pure HCD, the MSN-HCD revealed a potential anti-proliferation effect via the synergistic effect of the drug and the MSN vehicle. Additionally, this MSN-HCD had the effect of increasing the reactive oxygen species (ROS) levels and altered the Mitochondria membrane potential (MMP) in C6 cell line. The in vivo anti-tumor efficacy of enteric-coated MSN-HCD was evaluated by C6 Glioma bearing xenograft nude mice, and enteric-coated MSN-HCD clearly exhibited the greatest anti-glioma activity, as compared to the pure HCD and the untreated control. In terms of the effective treatment of brain glioma, this study provides conclusive evidence of the successful development of the anti-cancer agent HCD conjugated with enteric-coated MSN as a delivery control mechanism with enhanced dissolution characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.