Abstract

Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.

Highlights

  • Animals need to distinguish beneficial stimuli in order to survive

  • Sugar transport into Dh44 cells and glucose metabolism are necessary to induce calcium oscillations and for nutritious sugar choice (Dus et al, 2015). These results show that nutritious sugars directly activate Dh44 neurons via a sugar-metabolism-dependent pathway resulting in Dh44 neuropeptide secretion, which conveys the signal of nutritious sugars to other regions of the brain

  • The Drosophila DA 1-like receptor 2 (DopR2) expressed in mushroom body neurons mediates appetitive long-term memories; this receptor seems to be activated by protocerebral posterior lateral (PPL1) mushroom bodies (MB)-MP1 dopaminergic neurons signaling (Musso et al, 2015)

Read more

Summary

Introduction

Animals need to distinguish beneficial stimuli in order to survive. There is partial conservation among reward systems across species (Scaplen and Kaun, 2016). Palatability, voluntary consumption, and conditioned odor preference behavior assays have identified genes, molecular pathways, and neural circuits underlying drug reward, and have demonstrated that certain drugs, such as ethanol, can be rewarding for flies. As neural circuits and genes that mediate locomotor drug effects show partial overlap with those of natural and ethanol reward (Landayan and Wolf, 2015; this review).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.