Abstract

Josephson microwave circuits are essential for the currently flourishing research on superconducting technologies, such as quantum computation, quantum sensing, and microwave signal processing. To increase the possible parameter space for device operation with respect to the current standards, many materials for superconducting circuits are under active investigation. Here, we present the realization of a frequency-tunable, weakly nonlinear Josephson microwave circuit made of the high-temperature cuprate superconductor YBa2Cu3O7 (YBCO), a material with a high critical temperature and a very high critical magnetic field. An in situ frequency-tunability of ∼300 MHz is achieved by integrating a superconducting quantum interference device (SQUID) into the circuit based on Josephson junctions directly written with a helium ion microscope (HIM). Our results demonstrate that YBCO-HIM-SQUID microwave resonators are promising candidates for quantum sensing and microwave technology applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.