Abstract
We develop a flux globalization based well-balanced (WB) path-conservative central-upwind (PCCU) scheme for the one-dimensional shallow water flows in channels. Challenges in developing numerical methods for the studied system are mainly related to the presence of nonconservative terms modeling the flow when the channel width and bottom topography are discontinuous. We use the path-conservative technique to treat these nonconservative product terms and implement this technique within the flux globalization framework, for which the friction and aforementioned nonconservative terms are incorporated into the global flux: This results in a quasi-conservative system, which is numerically solved using the Riemann-problem-solver-free central-upwind scheme. The WB property of the resulting scheme (that is, its ability to exactly preserve both still- and moving-water equilibria at the discrete level) is ensured by performing piecewise linear reconstruction for the equilibrium variables rather than the conservative variables, and then evaluating the global flux using the obtained point values of the equilibrium quantities. The robustness and excellent performance of the proposed flux globalization based WB PCCU scheme are demonstrated in several numerical examples with both continuous and discontinuous channel width and bottom topography. In these examples, we clearly demonstrate the advantage of the proposed scheme over its simpler counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.