Abstract

This study reports the development of a new assay for the rapid determination of protein glutathionylation in tissues and cell lines using commercially available reagents and standard instrumentation. In this method cells are homogenized in the presence of N-ethylmaleimide to eliminate free thiols and the proteins are precipitated with acetone. Subsequently, the disulfide-bound glutathione is eluted from the protein by the addition of tris(2-carboxyethyl)phosphine and reacted with 2,3-napthalenedicarboxaldehyde to generate a highly fluorescent product. Lymphoblastoid cell lines were found to have glutathionylation levels in the range of 0.3–3nmol/mg protein, which were significantly elevated after treatment of the cells with S-nitrosoglutathione. Mouse tissues including liver, kidney, lung, heart, brain, spleen, and testes were found to have glutathionylation levels between 1 and 2.5nmol/mg protein and the levels tended to increase after treatment of mice with doxorubicin. In contrast, mouse skeletal muscle glutathionylation was significantly higher (4.2±0.33nmol/mg, p<0.001) than in other tissues in untreated mice and decreased to 1.9±0.15nmol/mg after doxorubicin treatment. This new method allows rapid measurement of cellular glutathionylation in a high-throughput 96-well plate format.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.