Abstract

Cobalt oxyhydroxide (CoOOH) nanosheets are efficient fluorescence quenchers due to their specificoptical properties and high surface area. The combination of CoOOH nanosheets and carbon dots (CDs) has not been used in any aptasensor based on fluorescence quenching so far. An aptamer based fluorometric assay is introduced that is making use of fluorescent CDs conjugated to the aptamer against methamphetamine (MTA), and of CoOOH nanosheets which reduce the fluorescence of the CDs as a quencher. The results revealed that the conjugated CDs with aptamers were able to enclose the CoOOH nanosheets. Consequently, fluorescence is quenched. If the aptamer on the CDbinds MTA, the CDs are detached from CoOOH nanosheets. As a result, fluorescence is restored proportionally to zheMTA concentration. The fluorometriclimit of detection is 1nM with a dynamic range from 5 to 156nM. The method was validated by comparing the results obtained by the new method to those obtained by ion mobility spectroscopy. Theoretical studies showed that the distance between CoOOH nanosheet and C-Ds is approximately 7.6Å which can illustrate the possibility of FRET phenomenon. The interactions of MTA and the aptamer were investigated using molecular dynamic simulation (MDS). Graphical abstract Carbon dots (C-Ds) were prepared from grape leaves, conjugated to aptamer, and adsorbed on CoOOH nanosheets. So, the fluorescence ofC-Ds is quenched. On addition of MTA, fluorescence is restored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.