Abstract
AbstractIt is often said that pnictogen‐bonding catalysis, and σ‐hole catalysis in general, would not work in aqueous systems because the solvent would interfere as an overcompetitive pnictogen‐bond acceptor. In this study, we show that the transfer of pnictogen‐bonding catalysis from hydrophobic solvents to aqueous systems is possible by replacing only hydrophobic with hydrophilic substrates, without changing catalyst or reaction. This differs from conventional covalent Lewis acid catalysts, which are instantaneously destroyed by ligand exchange. With their water‐proof substituents in place of exchangeable ligands, pnictogen‐bonding catalysts, the supramolecular counterpart of Lewis acid catalysts, are evinced to catalyze transfer hydrogenation of quinolines in neutral aqueous systems. To secure these results, we introduce a water‐soluble fluorogenic substrate that releases a coumarin upon the reduction of quinolines instead of activated quinolidiniums, and stiborane catalysts with deepened σ holes. They demonstrate that pnictogen‐bonding catalysts can operate in higher‐order architectures for supramolecular systems catalysis under biologically relevant conditions, and provide an operational assay for high‐throughput catalyst screening by fluorescence imaging, in situ under relevant aqueous conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.