Abstract

Staphylococcus aureus is the most common and impactful multi-drug resistant pathogen implicated in (periprosthetic) joint infections (PJI) and fracture-related infections (FRI). Therefore, the present proof-of-principle study was aimed at the rapid detection of S. aureus in synovial fluids and biofilms on extracted osteosynthesis materials through bacteria-targeted fluorescence imaging with the 'smart-activatable' DNA-based AttoPolyT probe. This fluorogenic oligonucleotide probe yields large fluorescence increases upon cleavage by micrococcal nuclease, an enzyme secreted by S. aureus. Synovial fluids from patients with suspected PJI and extracted osteosynthesis materials from trauma patients with suspected FRI were inspected for S. aureus nuclease activity with the AttoPolyT probe. Biofilms on osteosynthesis materials were imaged with the AttoPolyT probe and a vancomycin-IRDye800CW conjugate (vanco-800CW) specific for Gram-positive bacteria. 38 synovial fluid samples were collected and analyzed. Significantly higher fluorescence levels were measured for S. aureus-positive samples compared to, respectively, other Gram-positive bacterial pathogens (p < 0.0001), Gram-negative bacterial pathogens (p = 0.0038) and non-infected samples (p = 0.0030), allowing a diagnosis of S. aureus-associated PJI within 2h. Importantly, S. aureus-associated biofilms on extracted osteosynthesis materials from patients with FRI were accurately imaged with the AttoPolyT probe, allowing their correct distinction from biofilms formed by other Gram-positive bacteria detected with vanco-800CW within 15min. The present study highlights the potential clinical value of the AttoPolyT probe for fast and accurate detection of S. aureus infection in synovial fluids and biofilms on extracted osteosynthesis materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call