Abstract
There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4′-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π−π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms. The developed FPPU elastomer shows the highest recorded puncture energy (648.0 mJ), high tensile strength (27.0 MPa), as well as excellent self-healing efficiency (92.3%), along with low surface energy (50.9 MJ m−2), notch-insensitivity, and reprocessability compared with non-fluorinated counterpart biphenolic polyurethane (BPPU) elastomer. Taking advantage of the above-mentioned merits of FPPU elastomer, we prepare an anti-fouling triboelectric nanogenerator (TENG) with a self-healable, and reprocessable elastic substrate. Benefiting from stronger electron affinity of fluorine atoms than hydrogen atoms, this electronic device exhibits ultrahigh peak open-circuit voltage of 302.3 V compared to the TENG fabricated from BPPU elastomer. Furthermore, a healable and stretchable conductive composite is prepared. This research provides a distinct and general pathway toward constructing high-performance elastomers and will enable a series of new applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.