Abstract

AbstractIn Li‐rich cation‐disordered rocksalt oxide cathodes (DRX), partial fluorine substitution in the oxygen anion sublattice can increase the capacity contribution from transition‐metal (TM) redox while reducing that from the less reversible oxygen redox. To date, limited fluorination substitution has been achieved by introducing LiF precursor during the solid‐state synthesis. To take full advantage of the fluorination effect, however, a higher F content is desired. In the present study, the successful use of a fluorinated polymeric precursor is reported to increase the F solubility in DRX and the incorporation of F content up to 10–12.5 at% into the rocksalt lattice of a model Li‐Mn‐Nb‐O (LMNO) system, largely exceeding the 7.5 at% limit achieved with LiF synthesis. Higher F content in the fluorinated‐DRX (F‐DRX) significantly improves electrochemical performance, with a reversible discharge capacity of ≈255 mAh g−1 achieved at 10 at% of F substitution. After 30 cycles, up to a 40% increase in capacity retention is achieved through the fluorination. The study demonstrates the feasibility of using a new and effective fluorination process to synthesize advanced DRX cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.