Abstract

Here, L- and D-cysteine-functionalized graphene quantum dots (L-/D-cys-GQDs) were designed with the aim of obtaining a selective fluorescent nanosensor to detect L-morphine. Citric acid was pyrolyzed to synthesize the GQDs, which were then functionalized with chiral L- and D-cys species using a thiol-ene click reaction between sulfur group of cysteine species and CC double bonds of GQDs. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopies (XPS) provides elemental analysis data which approved the presence of sulfur and nitrogen elements of L- and D-cysteine species on the surface of GQDs. Transmission electron microscopy (TEM) showed that the particle size of the modified GQDs ranges from 2 to 4.2 nm. The results of fluorescence spectroscopy showed that upon functionalization of GQDs with L-/D-cys the fluorescence intensity decreases as a result of Forster resonance energy transfer (FRET) mechanism. Interestingly, in the presence of L-morphine, the fluorescence intensity of D-cys-GQDs was selectively turned on as the FRET mechanism is ceased between the cysteine species and GQDs. Additional tests demonstrated that this nanosensor cannot interact with other drugs like methamphetamine or ibuprofen. As a result, it can serve as a cheap and precise nanosensor for identifying low quantities of L-morphine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.