Abstract

A new composite material (SDs@ZIF-8) was synthesized by integrating sulfur nanodots (SDs) into metal-organic frameworks (ZIF-8) through a facile one-step self-assembly strategy. The obtained SDs@ZIF-8 has not only the high adsorption performance of ZIF-8 but also the superior fluorescence characteristics of SDs. The composite featured good dispersibility, stable structure as well as excellent fluorescence in water solution, and can be used as an ideal fluorescent sensor for tartrazine detection. Due to the high specific surface area and adsorption performance of ZIF-8, the prepared composite material can significantly enrich tartrazine, further enhancing the sensitivity of analysis. The fluorescence of SDs @ZIF-8 composite can be effectively quenched by tartrazine through the inner filter effect. The sensing technique exhibited exceptional sensitivity, as evidenced by its impressive detection limit of 6.5 nM across a broad linear range spanning from 0.02 to 90 μM. In addition to its high sensitivity, the technique displayed rapid response times and excellent selectivity. Moreover, the fluorescent sensing technology we developed has been employed successfully for the detection of tartrazine in real samples, which is expected to promote the development of the food safety industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.