Abstract

A newly designed and synthesized Salamo-Salen-Salamo-Zn(II) complex sensor (sensor ZT) was extensively explored for anion sensing studies. The selectivity and sensitivity of the sensor ZT towards H2PO4- ions were based on ICT and CHEF effects, and via displacement pathways in DMSO/H2O (9:1, v/v) medium in the presence of other anions like, PO43-, HPO42- and P2O74- in a short time, separately. The prepared ZT sensor has excellent association constant and low detection lines. The sensing mechanism and binding mode of the sensor were studied by UV–Vis spectroscopy, HR-MS, 1H NMR titration and theory calculations (DFT & TD-DFT) for analytes. The time response and stability of the sensor are also given. Meanwhile, the sensor ZT can be widely used as a simple and effective solid-state optical sensor to detect H2PO4- by intuitive fluorescence changes. In addition, besides the environment can be used as a powerful instrument for detecting H2PO4-, based on the good biocompatibility and tissue permeability of ZT, effectively monitoring H2PO4- in cellular distribution by confocal microscopy using Zebrafish and bean sprout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.