Abstract

Melanoma is a type of highly malignant and metastatic skin cancer, and early detection of melanoma by analyzing the level of its biomarker may decrease the likelihood of mortality. In this study, a fluorescent probe called NBR-AP for detecting tyrosinase (a biomarker of melanoma) has been created by incorporating a hydroxyphenylurea group (as a substrate for the enzyme) onto a fluorescent dye phenoxazine derivative (as an activatable signal reporter). This probe can be activated to generate fluorescence through a tyrosinase-mediated oxidation followed by hydrolysis of the urea linkage. The probe is able to detect the endogenous tyrosinase level in live cells and in zebrafish sensitively and selectively. Moreover, by imaging the tyrosinase activity, NBR-AP has been successfully applied to diagnose the melanoma and its metastasis in xenogeneic mouse models established via subcutaneous injection of B16F10 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.