Abstract

UV exposure of a fluorescent polymer, diphenylamino-s-triazine bridged p-phenylene vinylene polymer (DTOPV), resulted in fluorescence quenching and a change in surface wettability via photo-oxidation. Patterned polymer films were prepared simply by exposing the polymer film to UV source through a photomask under air. The UV-exposed region was highly biocompatible and provided selective mesenchymal stem cells (MSCs) attachment on it. This allowed cell alignment and patterning along the line patterns of linear, curved, and even various letter shapes. The proliferation rate of MSCs cultured on UV exposed surface (DTOPV+UV) was higher than that of the unexposed surface, and the cells were increased to10-fold after 6 days. The attachment of MSCs was highly selective to the UV-exposed pattern in the presence of collagen and gelatin, which induced cell patterning and attachment through hydrophilic interaction with the UV exposed area. Taking advantage of the emission from the DTOPV pattern, the cell location and...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call