Abstract
A fluorescent biosensor was developed for Cd2+ detection based on a Cd2+-fueled wheel DNAzyme walker. Cd2+ can activate the wheel to roll along the DNA walking tracks through DNAzyme cleavage and toehold-mediated strand displacement. The substrate strand was modified with BHQ and Cy5. Through continuous cleavage reactions toward the substrate strands, a high fluorescence signal can be obtained. The biosensor is ultrasensitive, and the detection limit is 0.2 pM (S/N = 3). The fluorescent assay is robust and has been applied to the determination of Cd2+ in real water samples with good accuracy and reliability. Using Cd2+, Pb2+, and Hg2+ as the three inputs, we also construct a concatenated AND logic gate. The input combination of (111) can produce an output of 1. Other input combinations produce an output of 0. Our proposed detection platform and logic system hold great promise for the ultrasensitive and intelligent sensing of different heavy metal ions in water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.