Abstract

A novel Schiff base chemosensor HMID, ((E)‑1‑((2‑hydroxy‑3‑methoxybenzylidene)amino)imidazolidine‑2,4‑dione), have been designed and synthesized. Sensor HMID showed a selectivity to Zn2+ through fluorescence enhancement in aqueous solution. Its detection limit was analyzed as 11.9 μM. Importantly, compound HMID could be applied to image Zn2+ in live cells. Detection mechanism of Zn2+ by HMID was suggested to be an effect of chelation-enhanced fluorescence (CHEF) by DFT calculations. Moreover, HMID could detect Cu2+ with a change of color from colorless to pink. The selective detection mechanism of Cu2+ by HMID was demonstrated to be the promotion of intramolecular charge transfer band by DFT calculations. Additionally, HMID could be employed as a naked-eye colorimetric kit for Cu2+. Therefore, HMID has the ability as a 'single sensor for dual targets'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call