Abstract

At this “Aluminum Age”, exposure to aluminum (metallic or ionic form) is inevitable and inestimable. The presence of aluminum in biological systems is evident but more often aluminum toxicity is less understood. Therefore, the presence of biologically reactive aluminum needs to be identified and quantified. Alongside metals, L-cysteine, an essential amino acid, plays a pivotal role in the homeostasis of cellular oxidative and reductive stress. However, excess (<7g) could be lethal and can lead to death. Thus, in-situ selective detection of aluminum and L-cysteine is of larger interest. Here we report a fluorogenic probe (R) for the sequential selective detection and quantification of Al3+ and L-cysteine in a semi-aqueous medium (3:7; water: DMSO). The probe (R) was synthesized by a one-step acid-mediated condensation reaction between pyridine-3,4-diamine and 2-hydroxy-1-napthaldehyde. The synthesized probe was characterized using 1H and 13C NMR, and HR-Mass spectroscopic techniques. The probe (R) is non-emissive in nature, but on recognition of Al3+, the probe R showed “turn-on” emission (bright yellow colour) showing two emission maxima (522 nm and 547 nm), and no naked eye observable color change. Other competing cations do not show any noticeable fluorescence outcome. The R + Al3+ ensemble can specifically detect L-cysteine among all the essential amino acids by showing a fluorescence “turn-off” response. The sensing mechanism of Al3+ is obeying the chelation-enhanced fluorescence (CHEF) effect. The binding constant of R + Al3+ is 0.3 × 104 M−1. The limit of detection (LoD) for Al3+ and L-cysteine are 2.02 × 10-7 M and 0.5 × 10-5 M respectively. The probe (R) can show maximum efficiency within the pH range (7.0–10.0). The probe is found non-toxic (>80 % cell viability with 15 µM concentration) and employed for the in-vitro fluorescence imaging in the HeLa cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.