Abstract

Distribution of dopamine, an essential neurotransmitter in mammalian central and peripheral nervous systems, in a lipid bilayer and at the surface of 1,2-ditetradecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) vesicles has been studied herein. To track the progress of dopamine through different regions of the lipid vesicle, these were synthesized using 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled phospholipid molecules tagged to either the headgroup (NBDPE) or the acyl chain (NBDPG). Dopamine-induced quenching of NBD fluorescence in the lipid vesicles demonstrates that dopamine has a preference to diffuse into the lipid bilayer. The change in the excited state lifetime obtained for NBDPG clearly indicates the preference in dopamine binding. The propositions were supported by fluorescence lifetime imaging microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.