Abstract
Based on the fluorescence properties of 2,4-(1H,3H)-quinazolinedione, a product of the reaction between cyanate and 2-aminobenzoic acid, a simple, sensitive, selective, and reproducible method for the cyanate analysis in aqueous ethanolic media is proposed. In this method, λ(exc) and λ(em) are 310 and 410 nm, respectively, and the limits of detection and quantification are 2.2 × 10(-7) and 6.7 × 10(-7) mol/L, respectively. Under optimal conditions (pH = 4.5, 40% ethanol), a concentration of 5.0 × 10(-6) mol/L cyanate can be determined in a single measurement, at a 95% level of confidence, with an uncertainty of ± 0.13 × 10(-6) mol/L. Cyanide, thiocyanate, chloride, nitrate, and sulfate ions, as well as urea and urethane in concentrations 1 × 10(3) higher than that of cyanate do not interfere with the measurement. The methodology was applied to cyanate analyses in the different fractions of the sugarcane distillate and the data strongly suggest a correlation between the presence of urea in wine, and the cyanate and ethyl carbamate concentrations in the spirit. Based on the fluorescence properties of the reaction product between cyanate and 2-aminobenzoic acid, a method for assaying cyanate was devised. This procedure applied to the sugarcane distillate showed for the first time a correlation between cyanate presence and ethyl carbamate (EC) formation in the different fractions of the product. Therefore, the proposed methodology can be used to predict in freshly distillate sugar cane spirits the potential total concentration of EC to be formed. Therefore, these data could be used to advise about the necessity of implementing a procedure to reduce spirit EC concentration before the product reaches the market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.