Abstract

A sensor based on fluorescence quenching has been built to detect oxygen activity in gas and water. The sensor consists of a xenon flash bulb as a light source; an excitation wavelength band pass filter; a dichroic beam splitter; collimating and focussing lenses; a plastic clad silica (PCS) rod with the fluorophore immobilized at the tip of it; an emission wavelength band pass filter; a photomultiplier tube (PMT); a monitor PIN photodiode detector; and interface electronics to couple a computer to the rest of the sensor. The device demonstrates a reversible change in fluorescence quenching for changes in oxygen activity. The fluorescence signal seen by the PMT varies over a factor of 3, being highest at 0 oxygen activity and lowest at atmospheric oxygen activity. The device exhibits a 63 % response time of less than 1 second for gases and less than 10 seconds for oxygen dissolved in water. The noise floor of the sensor is approximately 1%. The present embodiment of the device was designed to allow the sensor to operate in the marine environment. The optical components, computer, batteries, and power supply circuitry are mounted on a rack that is enclosed in a pressure housing. The immobilized fluorophore is exposed to sea water. The light travels along the PCS rod, through a pressure seal, to the rest of the system. Present investigations are centered around long term stability of the fluorophore and constituents of the real ocean that will interfere with the quenching mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.