Abstract

The study on arterial stenosis has gained rapid interest among researchers in the last decade because of its chronic consequences. Several researchers have tried to investigate stenosis and plaque progression in the carotid artery with different simulation models. In this study, a realistic 3-D geometry of the carotid artery has been used to analyze the effect of varying degrees of stenosis present at different locations of the carotid artery on various hemodynamic parameters. An extensive range of stenosis degrees, starting from a healthy artery(0 %stenosis) to 10%, 30%, 50%, 75%, and 90% stenosis, have been studied. These degrees of stenosis were planted at different locations of the artery grown simultaneously. The whole study was done under the realm of Fluid–Structure Interaction multiphysics. The change in velocity profiles at the areas of stenosis has been found along with the wall shear stress and arterial displacement. The magnitude of velocity and wall shear stress in the case of multiple stenosis locations has been found to be dependent on each other. The presence or absence of one stenosis affects the other, and given the regular and irregular patterns of the velocity profile, wall shear stress, and displacement, their inclusion in blood flow simulation studies having multiple stenoses should be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call