Abstract

Homogenization temperatures and salinity data are presented for fluid inclusions from hydrothermal gangue minerals (quartz and fluorite) associated with porphyry wolframite-molybdenite-arsenopyrite-sphaleritebismuth-chalcopyrite-cassiterite mineralization within the Fire Tower ore zone, Mt Pleasant, New Brunswick. The data indicate that ore mineral precipitation occurred within a temperature range of 260° to 490°C from moderate to high salinity (10–42 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized by high (>30 wt% NaCl equivalent) salinity fluids are recognized; one which occurred at relatively high temperature (350°–490°C); and one which took place at lower temperature (180°–250°C). The high salinity, high temperature stage is interpreted to be the result of resurgent boiling. Dilution of these early fluids by convecting meteoric water resulted in low to moderate salinity fluids, which dominate the inclusion population. The low temperature, high salinity fluid inclusions are interpreted to represent late residual fluids derived from boiling which occurred as a result of a change in the pressure regime from dominantly lithostatic to hydrostatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call