Abstract

The technology required for ultra-precision machining of non-ferrous metals is relatively well established, owing to significant improvements in the performance of the hardware used. However, no satisfactory analytical model has been developed for very small cutting depths of this process, demonstrating that the physics of the ultra-precision machining process are not well understood. This paper presents the development of an ultra-precision cutting model based on fluid mechanics that considers not only cutting tool geometry, including the cutting edge radius, but also the effect of elastic rebound at the flank face. This is the first time that a fluid dynamic model has been used to predict the effect of a cutting edge, its size effect, and the cutting forces during ultra-precision cutting. This model can also be used to provide estimates of the chip curling radius and tool-chip contact length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.