Abstract
We introduce a class of branching processes in which the reproduction or lifetime distribution at a given time depends on the total cumulative number of individuals who have been born in the population until that time. We focus on a continuous-time version of these processes, called total-progeny-dependent birth-and-death processes, and study some of their properties through the analysis of their deterministic (fluid) approximation. These properties include the maximum population size, the total progeny size at extinction, the time to reach the maximum population size, and the time until extinction. As the fluid approximation does not allow us to determine the time until extinction directly, we propose several methods to complement this approach. We also use the deterministic approach to study the behavior of the processes as we increase the magnitude of the individual’s birth rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.