Abstract

Abstract Kubo theory formalism has been used to obtain expressions for shear and dilatational stress relaxation functions in terms of statistical mechanical time-dependent correlation functions. This is equivalent to obtaining expressions for the complex modulus or the complex viscosity for all frequencies. These results provide a basis for calculating the macroscopic consequences of molecular models presently used to provide qualitative understanding of relaxation peaks for solid polymers. The shear and dilatational stress relaxation functions are quite different formally. For a particularly simple model it will be shown that the former is related to the frequency distribution of the kinetic energy and is also closely related to the dielectric relaxation function. The familiar results of the Rouse model are recovered in the results but no friction constant need be assumed in the present approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.